Download

Source code for eqc_models.base.operators

  • """
  • QUBO and Polynomial operators are used in EQC Models to pass the appropriate
  • format to the solver. All models must output one or both of QUBO or Polynomial
  • types. Each Solver checks for the appropriate type. If a model does not provide
  • the type, then it must raise OperatorNotAvailableError.
  • >>> Q = np.array([[1, 2], [0, 1]])
  • >>> qubo = QUBO(Q)
  • >>> (qubo.Q == np.array([[1, 1], [1, 1]])).all()
  • True
  • >>> coefficients = [1, 1, 2]
  • >>> indices = [(1, 1), (2, 2), (1, 2)]
  • >>> poly = Polynomial(coefficients, indices)
  • >>> indices = [(1, 1), (2, 2), (2, 1)]
  • >>> poly = Polynomial(coefficients, indices)
  • Traceback (most recent call last):
  • File "<stdin>", line 1, in <module>
  • ValueError: Input data to polynomial is not correct: index order must be monotonic
  • >>> s = np.array([1, 1])
  • >>> (poly.evaluate(s)==qubo.evaluate(s)).all()
  • True
  • """
  • from typing import List
  • from dataclasses import dataclass
  • import numpy as np
  • # polyeval module is a Cython module useful for speeding up computation
  • # of an operator's value at a solution. If the Cython module is not
  • # available, the poly_eval variable will be set to None, triggering the
  • # use of a pure Python method for evaluation
  • try:
  • from .polyeval import poly_eval
  • except ImportError:
  • poly_eval = None
  • class OperatorNotAvailableError(Exception):
  • """ General error to raise when an operator type is not implemented """
  • @dataclass
  • class QUBO:
  • """
  • Contains a QUBO in a symmetric matrix
  • If the matrix Q is not symmetric already, it will be after __post_init__
  • Parameters
  • ----------
  • qubo : np.array
  • 2d symmetric matrix of values which describe a quadratic unconstrained
  • binary optimization problem.
  • """
  • Q: np.ndarray
  • def __post_init__(self):
  • Q2 = (self.Q + self.Q.T) / 2
  • self.Q = Q2
  • def evaluate(self, solution : np.ndarray):
  • return solution.T@self.Q@solution
  • @dataclass
  • class Polynomial:
  • """
  • Represents an operator and evalute the operator at a point or set of points.
  • The operator must be a polynomial, possibly multivariate, with powers of up
  • to 5, at the time of this version. The representation of a polynomial uses
  • a sparse method with two components per term. A term is described by the
  • coefficient and a tuple of integers which indicate the variable indexes of
  • the term. The coefficients can be any value which fits in 32-bit floating
  • point representation, but the dynamic range of the coefficients should be
  • within the limit of the hardware's sensitivity for best results. The term
  • index tuple length must be consistent across all terms. If a term does not
  • have a variable index for all positions, such as with a term which is the
  • square of a variable when other terms have third-order powers, then there
  • must be a placeholder of 0 for the unused power. The variable indexes must
  • be in the tuple in ascending order. Here are some examples (suppose the max
  • degree is 4):
  • - :math:`x_1^2`: :code:`(0, 0, 1, 1)`
  • - :math:`x_1 x_2 x_3`: :code:`(0, 1, 2, 3)`
  • - :math:`x_2^2 x_3^2`: :code:`(2, 2, 3, 3)`
  • while it does not affect the optimiztion, a constant term can be applied to
  • the polynomial by using an index of all zeros :code:`(0, 0, 0, 0)`. When
  • listing the coefficients, the position in the array must correspond to the
  • position in the array of indexes. Also, the indices must be ordered with
  • linear terms first, quadratic terms next and so forth. A polynomial operator
  • does not have an explicit domain. It could be evaluated on an array of any
  • real numbers.
  • Parameters
  • ----------
  • coefficients : List, np.array
  • Floating point values for the coefficients of a polynomial. Must
  • correspond to the entries in the indices array.
  • indices : List, np.array
  • List of tuples or 2d np.array with integer values describing the term
  • which the corresponding coefficient value is used for.
  • Examples
  • --------
  • >>> coefficients = [-1, -1, 2]
  • >>> indices = [(0, 1), (0, 2), (1, 2)]
  • >>> polynomial = Polynomial(coefficients, indices)
  • >>> test_solution = np.array([1, 1])
  • >>> polynomial.evaluate(test_solution)
  • [0]
  • >>> test_solution = np.array([1, 0])
  • >>> polynomial.evaluate(test_solution)
  • [-1]
  • >>> test_solution = np.array([5, -1])
  • >>> polynomial.evaluate(test_solution)
  • [-14]
  • >>> test_solution = np.array([2.5, -2.5])
  • >>> polynomial.evaluate(test_solution)
  • [-12.5]
  • """
  • coefficients : List
  • indices : List
  • def __post_init__(self):
  • issues = set()
  • degree_count = None
  • if len(self.coefficients)!=len(self.indices):
  • issues.add("coefficients and indices must be the same length")
  • # ensure indices are not numpy
  • self.indices = [[int(val) for val in index] for index in self.indices]
  • for i in range(len(self.coefficients)):
  • if degree_count is None:
  • degree_count = len(self.indices[i])
  • elif len(self.indices[i])!=degree_count:
  • issues.add("term rank is not consistent")
  • for j in range(1, degree_count):
  • if self.indices[i][j] < self.indices[i][j-1]:
  • issues.add("index order must be monotonic")
  • try:
  • coeff = float(self.coefficients[i])
  • except TypeError:
  • issues.add("coefficient data types must be coercible to float type")
  • except ValueError:
  • issues.add("coefficient values must be coercible to float values")
  • if len(issues) > 0:
  • msg = "Input data to polynomial is not correct: "
  • msg += "; ".join([issue for issue in issues])
  • raise ValueError(msg)
  • def pure_evaluate(self, solution : np.ndarray) -> np.ndarray:
  • """
  • Evaluation in pure python
  • Parameters
  • ----------
  • solution : np.array
  • Solution to evaluate, is optionally 2-d, which results in multiple evaluations
  • Returns
  • -------
  • np.array
  • """
  • if len(solution.shape) == 1:
  • solution = solution.reshape((1, solution.shape[0]))
  • objective = [0 for k in range(solution.shape[0])]
  • for k in range(solution.shape[0]):
  • for i in range(len(self.coefficients)):
  • term = self.coefficients[i]
  • for j in self.indices[i]:
  • if j > 0:
  • term *= solution[k, j-1]
  • objective[k] += term
  • return objective
  • def evaluate(self, solution: np.ndarray):
  • """
  • Evaluate the polynomial at the solution point. If the Cython module is available,
  • use that for speedup, otherwise evaluate with Python loops.
  • Parameters
  • ----------
  • solution : np.array
  • Solution to evaluate. Is optinoally 2-d, which results in multiple exaluations.
  • Returns
  • -------
  • 1-d array of values which match the coerced dtype of the inputs.
  • """
  • if poly_eval is None:
  • return self.pure_evaluate(solution)
  • else:
  • return poly_eval(np.array(self.coefficients, dtype=np.float64),
  • np.array(self.indices, dtype=np.int64), solution)