Source code for eqc_models.base.polynomial
- from typing import Tuple, Union, List
- import numpy as np
- from eqc_models.base.base import EqcModel
- from eqc_models.base.operators import Polynomial
- from eqc_models.base.constraints import ConstraintsMixIn
- class PolynomialMixin:
- """This class provides an instance method and property that
- manage polynomial models.
- """
- @property
- def H(self) -> Tuple[np.ndarray, np.ndarray]:
- """
- Hamiltonian specified as a polynomial : coefficients, indices
-
- indices are of the format [0, idx-1, ..., idx-d] which must be non-decreasing
- and each idx-j is a 1-based index of the variable which is a power in the
- term. For a polynomial where the highest degree is 3 and specifying a term
- such as x_1x_2, the index array is [0, 1, 2]. Another example, x_1^2x_2 is
- [1, 1, 2].
- """
- return self.coefficients, self.indices
-
- @H.setter
- def H(self, value : Tuple[np.ndarray, np.ndarray]):
- """ Set H directly as coefficients, indices """
- coefficients, indices = value
- self.coefficients = coefficients
- self.indices = indices
- @property
- def sparse(self) -> Tuple[np.ndarray, np.ndarray]:
- return self.H
-
- def evaluate(self, solution : np.ndarray) -> float:
- """
- Evaluate polynomial at solution
-
- :solution: 1-d numpy array with the same length as the number of variables
- returns a floating point value
- """
- value = self.polynomial.evaluate(np.array(solution))
- return value
-
- @property
- def dynamic_range(self) -> float:
- """
- Dynamic range is a measure in decibels of the ratio of the largest
- magnitude coefficient in a problem to the smallest non-zero magnitude
- coefficient.
- The possible range of values are all greater than or equal to 0. The
- calculation is performed by finding the lowest non-zero of the
- absolute value of all the coefficients, which could be empty. In that
- case, the dynamic range is undefined, so an exception is raised. If
- it is positive, then the maximum of the absolute values is divided
- by the lowest. The base-10 logarithm of that value is taken and mul-
- tiplied by 10. This is the dynamic range.
- Returns
- ----------
-
- float
-
- """
- H = self.H
- coefficients = np.array(H[0])
- try:
- lowest = np.min(np.abs(coefficients[coefficients!=0]))
- except IndexError:
- raise ValueError("Dynamic range of a Hamiltonian of all 0 is undefined")
- highest = np.max(np.abs(coefficients))
- return 10*np.log10(highest / lowest)
- class PolynomialModel(PolynomialMixin, EqcModel):
- """
- Polynomial model base class.
- Parameters
- ------------
- coefficients: An array of polynomial coeffients.
- indices: An array of polynomial indices.
- Examples
- ------------
- >>> coeffs = np.array([1, 2, 3])
- >>> indices = np.array([[0, 0, 1], [0, 1, 1], [1, 1, 1]])
- >>> from eqc_models.base.polynomial import PolynomialModel
- >>> polynomial = PolynomialModel(coeffs, indices)
- >>> solution = np.array([1, 1, 1])
- >>> value = polynomial.evaluate(solution)
- >>> int(value)
- 6
- >>> polynomial.H # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
- (array([1, 2, 3]), array([[0, 0, 1],
- [0, 1, 1],
- [1, 1, 1]]))
- """
- def __init__(self, coefficients : Union[List, np.ndarray], indices : Union[List, np.ndarray]) -> None:
- self.coefficients = coefficients
- self.indices = indices
- @property
- def polynomial(self) -> Polynomial:
- coefficients, indices = self.H
- return Polynomial(coefficients=coefficients, indices=indices)
- class ConstrainedPolynomialModel(ConstraintsMixIn, PolynomialModel):
- """
- Constrained Polynomial model base class.
- Parameters
- ------------
- coefficients: An array of polynomial coeffients.
- indices: An array of polynomial indices.
- lhs: Left hand side of the linear constraints.
- rhs: Right hand side of the linear constraints.
- """
- def __init__(self, coefficients : Union[List, np.ndarray], indices : Union[List, np.ndarray],
- lhs : np.ndarray, rhs: np.ndarray):
- self.coefficients = np.array(coefficients)
- self.indices = np.array(indices).astype(np.int64)
- self.max_order = self.indices.shape[1]
- self.lhs = lhs
- self.rhs = rhs
- @property
- def penalties(self):
- """
- Penalty terms specified as a polynomial: coefficients, indices
-
- indices are of the format [0, idx-1, ..., idx-d] which must be non-decreasing
- and each idx-j is a 1-based index of the variable which is a power in the
- term. For a polynomial where the highest degree is 3 and specifying a term
- such as x_1x_2, the index array is [0, 1, 2]. Another example, x_1^2x_2 is
- [1, 1, 2].
- Only linear equality constraints are supported. Translate Ax=b into
- penalties using the superclass.
- """
- indices = []
- coefficients = []
- def lpad(index):
- missing = self.max_order - len(index)
- if missing > 0:
- index = (0,) * missing + index
- assert len(index) > 0
- return np.array(index)
- Pl, Pq = super(ConstrainedPolynomialModel, self).penalties
- for i in range(Pl.shape[0]):
- if Pl[i] != 0:
- indices.append(lpad((0, i+1)))
- coefficients.append(Pl[i])
- for j in range(i, Pq.shape[1]):
- if Pq[i, j] != 0:
- indices.append(lpad((i+1, j+1)))
- value = Pq[i, j]
- if i!=j:
- value += Pq[j, i]
- coefficients.append(value)
- return coefficients, indices
- def evaluatePenalties(self, solution : np.ndarray, include_offset=False) -> float:
- """
- Take the polynomial form of the penalties from the penalties property
- and evaluate the solution. The offset can be included by passing a True
- value to the `include_offset` keyword argument.
- Parameters
- -----------
- solution : np.ndarray
- Solution to evaluate for a penalty value
- include_offset : bool
- Optional argument indicating whether or not to include the offset value.
- Returns
- ---------
- Penalty value : float
- Examples
- ---------
- >>> coeff = np.array([-1.0, -1.0])
- >>> indices = np.array([(0, 1), (0, 2)])
- >>> lhs = np.array([[1.0, 1.0]])
- >>> rhs = np.array([1.0])
- >>> model = ConstrainedPolynomialModel(coeff, indices, lhs, rhs)
- >>> sol = np.array([1.0, 1.0])
- >>> lhs@sol - rhs
- array([1.])
- >>> model.evaluatePenalties(sol)+model.offset
- 1.0
- >>> model.evaluatePenalties(sol)
- 0.0
- >>> model.evaluatePenalties(sol, include_offset=True)
- 1.0
-
- """
- coefficients, indices = self.penalties
- solution = np.array(solution, dtype=np.float64)
- polynomial = Polynomial(coefficients, indices)
- if include_offset:
- value = self.offset
- else:
- value = 0
- value += polynomial.evaluate(solution)
- return value
- def evaluateObjective(self, solution : np.ndarray) -> float:
- """
- Take the polynomial coeff and indices from constructor and evalute the
- solution with it.
- Parameters
- -----------
- solution : np.ndarray
- Soluttion to evaluate the objective value
- Returns
- --------
- objective value : float
- """
- coefficients = self.coefficients
- indices = self.indices
- solution = np.array(solution, dtype=np.float64)
- polynomial = Polynomial(coefficients, indices)
- return polynomial.evaluate(solution)
- @property
- def H(self) -> Tuple[np.ndarray, np.ndarray]:
- """ Provide the sparse format for the Hamiltonian """
- p_coeff, p_indices = self.penalties
- coefficients, indices = self.coefficients, self.indices
- terms = {}
- alpha = self.alpha
- for index, coeff in zip(p_indices, p_coeff):
- index = tuple(index)
- assert len(index) > 1
- if index not in terms:
- terms[index] = alpha * coeff
- else:
- terms[index] += alpha * coeff
- for index, coeff in zip(indices, coefficients):
- index = tuple(index)
- if index not in terms:
- terms[index] = coeff
- else:
- terms[index] += coeff
- indices = [index for index in terms.keys()]
- indices.sort()
- coefficients = [terms[tuple(index)] for index in indices]
- return coefficients, indices