Download

Source code for eqc_models.base.polynomial

  • # (C) Quantum Computing Inc., 2024.
  • from typing import Tuple, Union, List
  • import numpy as np
  • from eqc_models.base.base import EqcModel
  • from eqc_models.base.operators import Polynomial
  • from eqc_models.base.constraints import ConstraintsMixIn
  • class PolynomialMixin:
  • """This class provides an instance method and property that
  • manage polynomial models.
  • """
  • @property
  • def H(self) -> Tuple[np.ndarray, np.ndarray]:
  • """
  • Hamiltonian specified as a polynomial : coefficients, indices
  • indices are of the format [0, idx-1, ..., idx-d] which must be non-decreasing
  • and each idx-j is a 1-based index of the variable which is a power in the
  • term. For a polynomial where the highest degree is 3 and specifying a term
  • such as x_1x_2, the index array is [0, 1, 2]. Another example, x_1^2x_2 is
  • [1, 1, 2].
  • """
  • return self.coefficients, self.indices
  • @H.setter
  • def H(self, value : Tuple[np.ndarray, np.ndarray]):
  • """ Set H directly as coefficients, indices """
  • coefficients, indices = value
  • self.coefficients = coefficients
  • self.indices = indices
  • @property
  • def sparse(self) -> Tuple[np.ndarray, np.ndarray]:
  • return self.H
  • def evaluate(self, solution : np.ndarray) -> float:
  • """
  • Evaluate polynomial at solution
  • :solution: 1-d numpy array with the same length as the number of variables
  • returns a floating point value
  • """
  • value = self.polynomial.evaluate(np.array(solution))
  • return value
  • @property
  • def dynamic_range(self) -> float:
  • """
  • Dynamic range is a measure in decibels of the ratio of the largest
  • magnitude coefficient in a problem to the smallest non-zero magnitude
  • coefficient.
  • The possible range of values are all greater than or equal to 0. The
  • calculation is performed by finding the lowest non-zero of the
  • absolute value of all the coefficients, which could be empty. In that
  • case, the dynamic range is undefined, so an exception is raised. If
  • it is positive, then the maximum of the absolute values is divided
  • by the lowest. The base-10 logarithm of that value is taken and mul-
  • tiplied by 10. This is the dynamic range.
  • Returns
  • ----------
  • float
  • """
  • H = self.H
  • coefficients = np.array(H[0])
  • try:
  • lowest = np.min(np.abs(coefficients[coefficients!=0]))
  • except IndexError:
  • raise ValueError("Dynamic range of a Hamiltonian of all 0 is undefined")
  • highest = np.max(np.abs(coefficients))
  • return 10*np.log10(highest / lowest)
  • class PolynomialModel(PolynomialMixin, EqcModel):
  • """
  • Polynomial model base class.
  • Parameters
  • ------------
  • coefficients: An array of polynomial coeffients.
  • indices: An array of polynomial indices.
  • Examples
  • ------------
  • >>> coeffs = np.array([1, 2, 3])
  • >>> indices = np.array([[0, 0, 1], [0, 1, 1], [1, 1, 1]])
  • >>> from eqc_models.base.polynomial import PolynomialModel
  • >>> polynomial = PolynomialModel(coeffs, indices)
  • >>> solution = np.array([1, 1, 1])
  • >>> value = polynomial.evaluate(solution)
  • >>> int(value)
  • 6
  • >>> polynomial.H # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
  • (array([1, 2, 3]), array([[0, 0, 1],
  • [0, 1, 1],
  • [1, 1, 1]]))
  • """
  • def __init__(self, coefficients : Union[List, np.ndarray], indices : Union[List, np.ndarray]) -> None:
  • self.coefficients = coefficients
  • self.indices = indices
  • @property
  • def polynomial(self) -> Polynomial:
  • coefficients, indices = self.H
  • return Polynomial(coefficients=coefficients, indices=indices)
  • class ConstrainedPolynomialModel(ConstraintsMixIn, PolynomialModel):
  • """
  • Constrained Polynomial model base class.
  • Parameters
  • ------------
  • coefficients: An array of polynomial coeffients.
  • indices: An array of polynomial indices.
  • lhs: Left hand side of the linear constraints.
  • rhs: Right hand side of the linear constraints.
  • """
  • def __init__(self, coefficients : Union[List, np.ndarray], indices : Union[List, np.ndarray],
  • lhs : np.ndarray, rhs: np.ndarray):
  • self.coefficients = np.array(coefficients)
  • self.indices = np.array(indices).astype(np.int64)
  • self.max_order = self.indices.shape[1]
  • self.lhs = lhs
  • self.rhs = rhs
  • @property
  • def penalties(self):
  • """
  • Penalty terms specified as a polynomial: coefficients, indices
  • indices are of the format [0, idx-1, ..., idx-d] which must be non-decreasing
  • and each idx-j is a 1-based index of the variable which is a power in the
  • term. For a polynomial where the highest degree is 3 and specifying a term
  • such as x_1x_2, the index array is [0, 1, 2]. Another example, x_1^2x_2 is
  • [1, 1, 2].
  • Only linear equality constraints are supported. Translate Ax=b into
  • penalties using the superclass.
  • """
  • indices = []
  • coefficients = []
  • def lpad(index):
  • missing = self.max_order - len(index)
  • if missing > 0:
  • index = (0,) * missing + index
  • assert len(index) > 0
  • return np.array(index)
  • Pl, Pq = super(ConstrainedPolynomialModel, self).penalties
  • for i in range(Pl.shape[0]):
  • if Pl[i] != 0:
  • indices.append(lpad((0, i+1)))
  • coefficients.append(Pl[i])
  • for j in range(i, Pq.shape[1]):
  • if Pq[i, j] != 0:
  • indices.append(lpad((i+1, j+1)))
  • value = Pq[i, j]
  • if i!=j:
  • value += Pq[j, i]
  • coefficients.append(value)
  • return coefficients, indices
  • def evaluatePenalties(self, solution : np.ndarray, include_offset=False) -> float:
  • """
  • Take the polynomial form of the penalties from the penalties property
  • and evaluate the solution. The offset can be included by passing a True
  • value to the `include_offset` keyword argument.
  • Parameters
  • -----------
  • solution : np.ndarray
  • Solution to evaluate for a penalty value
  • include_offset : bool
  • Optional argument indicating whether or not to include the offset value.
  • Returns
  • ---------
  • Penalty value : float
  • Examples
  • ---------
  • >>> coeff = np.array([-1.0, -1.0])
  • >>> indices = np.array([(0, 1), (0, 2)])
  • >>> lhs = np.array([[1.0, 1.0]])
  • >>> rhs = np.array([1.0])
  • >>> model = ConstrainedPolynomialModel(coeff, indices, lhs, rhs)
  • >>> sol = np.array([1.0, 1.0])
  • >>> lhs@sol - rhs
  • array([1.])
  • >>> model.evaluatePenalties(sol)+model.offset
  • 1.0
  • >>> model.evaluatePenalties(sol)
  • 0.0
  • >>> model.evaluatePenalties(sol, include_offset=True)
  • 1.0
  • """
  • # get the coefficients and indices for the penalty polynomial
  • # use the Polynomial operator to evaluate the solution
  • coefficients, indices = self.penalties
  • solution = np.array(solution, dtype=np.float64)
  • polynomial = Polynomial(coefficients, indices)
  • if include_offset:
  • value = self.offset
  • else:
  • value = 0
  • value += polynomial.evaluate(solution)
  • return value
  • def evaluateObjective(self, solution : np.ndarray) -> float:
  • """
  • Take the polynomial coeff and indices from constructor and evalute the
  • solution with it.
  • Parameters
  • -----------
  • solution : np.ndarray
  • Soluttion to evaluate the objective value
  • Returns
  • --------
  • objective value : float
  • """
  • coefficients = self.coefficients
  • indices = self.indices
  • solution = np.array(solution, dtype=np.float64)
  • polynomial = Polynomial(coefficients, indices)
  • return polynomial.evaluate(solution)
  • @property
  • def H(self) -> Tuple[np.ndarray, np.ndarray]:
  • """ Provide the sparse format for the Hamiltonian """
  • p_coeff, p_indices = self.penalties
  • coefficients, indices = self.coefficients, self.indices
  • terms = {}
  • alpha = self.alpha
  • for index, coeff in zip(p_indices, p_coeff):
  • index = tuple(index)
  • assert len(index) > 1
  • if index not in terms:
  • terms[index] = alpha * coeff
  • else:
  • terms[index] += alpha * coeff
  • for index, coeff in zip(indices, coefficients):
  • index = tuple(index)
  • if index not in terms:
  • terms[index] = coeff
  • else:
  • terms[index] += coeff
  • indices = [index for index in terms.keys()]
  • indices.sort()
  • coefficients = [terms[tuple(index)] for index in indices]
  • return coefficients, indices