Download

Source code for eqc_models.base.quadratic

  • # (C) Quantum Computing Inc., 2024.
  • from typing import Tuple
  • import warnings
  • import numpy as np
  • from eqc_models.base.base import EqcModel
  • from eqc_models.base.constraints import ConstraintsMixIn
  • from eqc_models.base.operators import QUBO, Polynomial
  • class QuadraticMixIn:
  • """
  • This class provides an instance method and property that
  • manage quadratic models.
  • """
  • @property
  • def sparse(self) -> Tuple[np.ndarray, np.ndarray]:
  • """
  • Put the linear and quadratic terms in a sparse (poly) format
  • Returns
  • ----------
  • coefficients: List
  • indices: List
  • """
  • C, J = self.H
  • C = np.squeeze(C)
  • n = self.n
  • indices = []
  • coefficients = []
  • # build a key (ordered tuple of indices) of length 2 for each element
  • for i in range(n):
  • if C[i] != 0:
  • key = (0, i+1)
  • indices.append(key)
  • coefficients.append(C[i])
  • # make J upper triangular
  • J = np.triu(J) + np.tril(J, -1).T
  • for i in range(n):
  • for j in range(i, n):
  • val = J[i, j]
  • if val != 0:
  • key = (i+1, j+1)
  • indices.append(key)
  • coefficients.append(val)
  • return np.array(coefficients, dtype=np.float32), np.array(indices, dtype=np.int32)
  • @property
  • def polynomial(self) -> Polynomial:
  • coefficients, indices = self.sparse
  • return Polynomial(coefficients=coefficients, indices=indices)
  • def evaluate(self, solution: np.ndarray) -> float:
  • """
  • Evaluate the solution using the original operator.
  • """
  • sol = np.array(solution)
  • C, J = self.H
  • return np.squeeze(sol.T @ J @ sol + C.T @ sol)
  • @property
  • def dynamic_range(self) -> float:
  • """
  • Dynamic range is a measure in decibels of the ratio of the largest
  • magnitude coefficient in a problem to the smallest non-zero magnitude
  • coefficient.
  • The possible range of values are all greater than or equal to 0. The
  • calculation is performed by finding the lowest non-zero of the
  • absolute value of all the coefficients, which could be empty. The
  • values are in two arrays, so the minimum and maximum values of these
  • arrays are compared to each other. When there is no non-zero in either
  • of the arrays, then an exception is raised indicating that the dynamic
  • range of an operator of all zeros is undefined. If the lowest value is
  • positive, then the maximum of the absolute values is divided by the
  • lowest. The base-10 logarithm of that value is taken and multiplied by
  • 10. This is the dynamic range.
  • Returns
  • ----------
  • float
  • """
  • C, J = self.H
  • # if either C or J are all 0, then set min to very large value
  • try:
  • min_c = np.min(np.abs(C[C!=0]))
  • except IndexError:
  • min_c = 1e308
  • try:
  • min_j = np.min(np.abs(J[J!=0]))
  • except IndexError:
  • min_j = 1e308
  • max_c = np.max(np.abs(C))
  • max_j = np.max(np.abs(J))
  • lowest = min_c if min_c < min_j else min_j
  • highest = max_c if max_c > max_j else max_j
  • if lowest > highest:
  • raise ValueError("Dynamic range of a Hamiltonian of all 0 is undefined")
  • return 10*np.log10(highest / lowest)
  • @property
  • def qubo(self) -> QUBO:
  • """
  • Transform the model into QUBO form. Use `upper_bound` to determine
  • a log-encoding of the variables.
  • """
  • bin_n = 0
  • bits = []
  • #
  • C, J = self.H
  • # upper_bound is an array of the maximum values each variable can take
  • upper_bound = self.upper_bound
  • if np.sum(upper_bound)!=upper_bound.shape[0]:
  • for i in range(upper_bound.shape[0]):
  • bits.append(1+np.floor(np.log2(upper_bound[i])))
  • bin_n += bits[-1]
  • bin_n = int(bin_n)
  • Q = np.zeros((bin_n, bin_n), dtype=np.float32)
  • Q.shape
  • powers = [2**np.arange(bit_count) for bit_count in bits]
  • blocks = []
  • linear_blocks = []
  • for i in range(len(powers)):
  • # add the linear terms to the diagonal
  • linear_blocks.append(C[i]*powers[i])
  • row = []
  • for j in range(len(powers)):
  • mult = J[i,j]
  • block = np.outer(powers[i], powers[j])
  • block *= mult
  • row.append(block)
  • blocks.append(row)
  • Q[:, :] = np.block(blocks)
  • linear_operator = np.hstack(linear_blocks)
  • Q += np.diag(linear_operator)
  • else:
  • # in this case, the fomulation already has only binary variables
  • Q = np.zeros_like(J)
  • Q[:, :] = J
  • Q += np.diag(np.squeeze(C))
  • return QUBO(Q)
  • class QuadraticModel(QuadraticMixIn, EqcModel):
  • """
  • Provides a quadratic operator and device sum constraint support.
  • Parameters
  • -----------
  • J: Quadratic hamiltonian array.
  • C: Linear hamiltonian array.
  • Examples
  • ---------
  • >>> C = np.array([1, 2])
  • >>> J = np.array([[2, 1], [1, 2]])
  • >>> from eqc_models.base.quadratic import QuadraticModel
  • >>> model = QuadraticModel(C, J)
  • >>> model.upper_bound = np.array([1, 1])
  • >>> qubo = model.qubo
  • >>> qubo.Q # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
  • array([[3., 1.],
  • [1., 4.]])
  • """
  • def __init__(self, C: np.ndarray, J: np.ndarray):
  • self._H = C, J
  • class ConstrainedQuadraticModel(ConstraintsMixIn, QuadraticModel):
  • """
  • Provides a constrained quadratic operator and device sum constraint support.
  • Parameters
  • -----------
  • J: Quadratic hamiltonian array.
  • C: Linear hamiltonian array.
  • lhs: Left hand side of the linear constraints.
  • rhs: Right hand side of the linear constraints.
  • Examples
  • -------------------
  • >>> C = np.array([1, 2])
  • >>> J = np.array([[2, 1], [1, 2]])
  • >>> lhs = np.array([[1, 1], [1, 1]])
  • >>> rhs = np.array([1, 1])
  • >>> from eqc_models.base.quadratic import ConstrainedQuadraticModel
  • >>> model = ConstrainedQuadraticModel(C, J, lhs, rhs)
  • >>> model.penalty_multiplier = 1
  • >>> model.upper_bound = np.array([1, 1])
  • >>> qubo = model.qubo
  • >>> qubo.Q # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
  • array([[1., 3.],
  • [3., 2.]])
  • """
  • def __init__(self, C_obj: np.array, J_obj: np.array, lhs: np.array, rhs: np.array):
  • self.quad_objective = J_obj
  • self.linear_objective = C_obj
  • self.lhs = lhs
  • self.rhs = rhs
  • self._penalty_multiplier = None
  • @property
  • def H(self) -> Tuple[np.ndarray, np.ndarray]:
  • """
  • Return a pair of arrays, the linear and quadratic portions of a quadratic
  • operator that has the objective plus penalty functions multiplied by the
  • penalty multiplier. The linear terms are the first array and the quadratic
  • are the second.
  • Returns
  • -----------
  • `np.ndarray, np.nedarray`
  • """
  • C = self.linear_objective
  • J = self.quad_objective
  • pC, pJ = self.penalties
  • alpha = self.penalty_multiplier
  • return C + alpha * pC, J + alpha * pJ
  • @ConstraintsMixIn.penalty_multiplier.setter
  • def penalty_multiplier(self, value):
  • ConstraintsMixIn.penalty_multiplier.fset(self, value)
  • @property
  • def constraints(self):
  • return self.lhs, self.rhs
  • def evaluateObjective(self, solution: np.ndarray) -> float:
  • J = self.quad_objective
  • C = self.linear_objective
  • return np.squeeze(C.T @ solution + solution.T@J@solution)