Download

Source code for eqc_models.utilities.polynomial

  • # (C) Quantum Computing Inc., 2024.
  • import itertools
  • def evaluate_polynomial(terms, solution):
  • val = 0
  • # print(solution)
  • for k, coeff in terms.items():
  • term = coeff
  • for idx in k:
  • if idx > 0:
  • idx -= 1
  • term *= solution[idx]
  • # if term != 0:
  • # print(k, term)
  • val += term
  • return val
  • def convert_hamiltonian_to_polynomial(
  • A,
  • B,
  • C,
  • D,
  • num_vars,
  • ):
  • """Converts a hamiltonian of up to fourth order to a polynomial.
  • D_{ijkl} x_i x_j x_k x_l + C_{ijk} x_i x_j x_k + B_{ij} x_i x_j
  • + A_i x_i
  • Input:
  • A: First order hamiltonian.
  • B: Second order hamiltonian.
  • C: Third order hamiltonian.
  • D: Fourth order hamiltonian.
  • num_vars: Number of variables.
  • Output:
  • polynomial_indices, polynomila_coefs: Indices and coefficients of
  • polynomial that respresents the hamiltonian.
  • """
  • assert num_vars >= 1, "Invalid number of variables <%d>!" % num_vars
  • if D is not None:
  • assert D.shape[0] == num_vars, "Inconsistent dimensions!"
  • assert D.shape[1] == num_vars, "Inconsistent dimensions!"
  • assert D.shape[2] == num_vars, "Inconsistent dimensions!"
  • assert D.shape[3] == num_vars, "Inconsistent dimensions!"
  • poly_order = 4
  • elif C is not None:
  • assert C.shape[0] == num_vars, "Inconsistent dimensions!"
  • assert C.shape[1] == num_vars, "Inconsistent dimensions!"
  • assert C.shape[2] == num_vars, "Inconsistent dimensions!"
  • poly_order = 3
  • elif B is not None:
  • assert B.shape[0] == num_vars, "Inconsistent dimensions!"
  • assert B.shape[1] == num_vars, "Inconsistent dimensions!"
  • poly_order = 2
  • elif A is not None:
  • assert A.shape[0] == num_vars, "Inconsistent dimensions!"
  • poly_order = 1
  • else:
  • assert False, "No hamiltonian provided!"
  • poly_indices = []
  • poly_coefs = []
  • if A is not None:
  • for i in range(num_vars):
  • coef_val = A[i]
  • if coef_val != 0:
  • poly_coefs.append(coef_val)
  • poly_indices.append([0] * (poly_order - 1) + [i + 1])
  • if B is not None:
  • for i in range(num_vars):
  • for j in range(i, num_vars):
  • if i == j:
  • coef_val = B[i][i]
  • else:
  • coef_val = B[i][j] + B[j][i]
  • if coef_val != 0:
  • poly_coefs.append(coef_val)
  • poly_indices.append(
  • [0] * (poly_order - 2) + [i + 1, j + 1]
  • )
  • if C is not None:
  • for i in range(num_vars):
  • for j in range(i, num_vars):
  • for k in range(j, num_vars):
  • unique_perms = [
  • list(item)
  • for item in set(itertools.permutations([i, j, k]))
  • ]
  • coef_val = 0.0
  • for item in unique_perms:
  • coef_val += C[item[0]][item[1]][item[2]]
  • if coef_val != 0:
  • poly_coefs.append(coef_val)
  • poly_indices.append(
  • [0] * (poly_order - 3) + [i + 1, j + 1, k + 1]
  • )
  • if D is not None:
  • for i in range(num_vars):
  • for j in range(i, num_vars):
  • for k in range(j, num_vars):
  • for l in range(k, num_vars):
  • unique_perms = [
  • list(item)
  • for item in set(
  • itertools.permutations([i, j, k, l])
  • )
  • ]
  • coef_val = 0.0
  • for item in unique_perms:
  • coef_val += D[item[0]][item[1]][item[2]][
  • item[3]
  • ]
  • if coef_val != 0:
  • poly_coefs.append(coef_val)
  • poly_indices.append(
  • [i + 1, j + 1, k + 1, l + 1]
  • )
  • return poly_indices, poly_coefs