Source code for eqc_models.utilities.polynomial
- def evaluate_polynomial(terms, solution):
- val = 0
-
- for k, coeff in terms.items():
- term = coeff
- for idx in k:
- if idx > 0:
- idx -= 1
- term *= solution[idx]
-
-
- val += term
- return val
- def convert_hamiltonian_to_polynomial(
- A,
- B,
- C,
- D,
- num_vars,
- ):
- """Converts a hamiltonian of up to fourth order to a polynomial.
- D_{ijkl} x_i x_j x_k x_l + C_{ijk} x_i x_j x_k + B_{ij} x_i x_j
- + A_i x_i
- Input:
- A: First order hamiltonian.
- B: Second order hamiltonian.
- C: Third order hamiltonian.
- D: Fourth order hamiltonian.
- num_vars: Number of variables.
- Output:
- polynomial_indices, polynomila_coefs: Indices and coefficients of
- polynomial that respresents the hamiltonian.
- """
- assert num_vars >= 1, "Invalid number of variables <%d>!" % num_vars
- if D is not None:
- assert D.shape[0] == num_vars, "Inconsistent dimensions!"
- assert D.shape[1] == num_vars, "Inconsistent dimensions!"
- assert D.shape[2] == num_vars, "Inconsistent dimensions!"
- assert D.shape[3] == num_vars, "Inconsistent dimensions!"
- poly_order = 4
- elif C is not None:
- assert C.shape[0] == num_vars, "Inconsistent dimensions!"
- assert C.shape[1] == num_vars, "Inconsistent dimensions!"
- assert C.shape[2] == num_vars, "Inconsistent dimensions!"
- poly_order = 3
- elif B is not None:
- assert B.shape[0] == num_vars, "Inconsistent dimensions!"
- assert B.shape[1] == num_vars, "Inconsistent dimensions!"
- poly_order = 2
- elif A is not None:
- assert A.shape[0] == num_vars, "Inconsistent dimensions!"
- poly_order = 1
- else:
- assert False, "No hamiltonian provided!"
- poly_indices = []
- poly_coefs = []
- if A is not None:
- for i in range(num_vars):
- coef_val = A[i]
- if coef_val != 0:
- poly_coefs.append(coef_val)
- poly_indices.append([0] * (poly_order - 1) + [i + 1])
- if B is not None:
- for i in range(num_vars):
- for j in range(i, num_vars):
- if i == j:
- coef_val = B[i][i]
- else:
- coef_val = B[i][j] + B[j][i]
- if coef_val != 0:
- poly_coefs.append(coef_val)
- poly_indices.append(
- [0] * (poly_order - 2) + [i + 1, j + 1]
- )
- if C is not None:
- for i in range(num_vars):
- for j in range(i, num_vars):
- for k in range(j, num_vars):
- unique_perms = [
- list(item)
- for item in set(itertools.permutations([i, j, k]))
- ]
- coef_val = 0.0
- for item in unique_perms:
- coef_val += C[item[0]][item[1]][item[2]]
- if coef_val != 0:
- poly_coefs.append(coef_val)
- poly_indices.append(
- [0] * (poly_order - 3) + [i + 1, j + 1, k + 1]
- )
- if D is not None:
- for i in range(num_vars):
- for j in range(i, num_vars):
- for k in range(j, num_vars):
- for l in range(k, num_vars):
- unique_perms = [
- list(item)
- for item in set(
- itertools.permutations([i, j, k, l])
- )
- ]
- coef_val = 0.0
- for item in unique_perms:
- coef_val += D[item[0]][item[1]][item[2]][
- item[3]
- ]
- if coef_val != 0:
- poly_coefs.append(coef_val)
- poly_indices.append(
- [i + 1, j + 1, k + 1, l + 1]
- )
- return poly_indices, poly_coefs