Source code for eqc_models.sequence.tsp
- """
- # Traveling Salesman Problem
- ## Class listing
- `class TSPModel` - a base class
- `class MTZTSPModel` - a concrete class for the MTZ formulation of a TSP
- MTZ has been chosen for a demonstration of the integer capability of the
- Dirac devices. A feasible solution will produce the valid sequence of
- visits by simply ordering the nodes by the $s_i$ variables. In the literature,
- the ordering variables are named with $u$, but this is avoided because the
- graph notation with $u$ being a tail node and $v$ being a head node is used
- here. In conjunction with this notation, the variables $x_{ij}$ reference the
- node index where the index of node $u$ is $i$ and the index of node $v$ is
- $j$.
- """
- from typing import (Dict, Tuple)
- import numpy as np
- from eqc_models.base import ConstrainedPolynomialModel, InequalitiesMixin
- from eqc_models.base.operators import Polynomial
- class TSPModel(ConstrainedPolynomialModel):
- """
- The TSPModel class implements the basics for building different formualtions of
- TSP models.
- """
- def __init__(self, D : Dict[Tuple[int, int], float]):
- self.D = D
- self.nodes = nodes = set()
- self.edges = edges = set()
- for (u, v) in D.keys():
- nodes.add(u)
- nodes.add(v)
- assert (u, v) not in edges, "Only a single edge from tail to head is allowed"
- edges.add((u, v))
-
- self.N = len(nodes)
- self.variables = None
- def distance(self, i : int, j : int) -> float:
- """
- Parameters
- ----------
- i: int
- index of first node
- Returns
- -------
- float
- Retrieves the distance between nodes at indexes i and j. Supports asymmetric
- (D[i, j] <> D[j, i]) distances.
- """
- return self.D[i, j]
-
- def cost(self, solution : np.ndarray) -> float:
- """
- Solution cost is the sum of all D values where (i,j) is chosen
- Parameters:
- :solution: np.ndarray - An array of of 0,1 values which describe a route
- depending on the formulation chosen.
- Returns: float
- """
- raise NotImplementedError("Subclass must implement cost method")
- class MTZTSPModel(InequalitiesMixin, TSPModel):
- """
- Using the Miller Tucker Zemlin (1960) formulation of TSP, create a model
- instance that contains variables for node order (to eliminate subtours)
- and edge choices.
- >>> D = {(1, 2): 1, (2, 1): 1, (1, 3): 2, (3, 1): 2, (2, 3): 3, (3, 2): 3}
- >>> model = MTZTSPModel(D)
- >>> model.penalty_multiplier = 10
- >>> model.distance(1, 2)
- 1
- >>> model.distance(3, 2)
- 3
- >>> solution = np.array([1, 0, 0, 1, 1, 0, 1, 2, 3, 4, 4, 2, 5])
- >>> model.cost(solution)
- 6
- >>> lhs, rhs = model.constraints
- >>> (lhs@solution - rhs == 0).all()
- True
- >>> poly = model.polynomial
- >>> poly.evaluate(solution) + model.alpha * model.offset
- 6.0
- >>> infeasible = np.array([0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 4, 2, 5])
- >>> Pl, Pq = -2 * rhs.T@lhs, lhs.T@lhs
- >>> Pl.T@solution + solution.T@Pq@solution + model.offset
- 0.0
- >>> Pl.T@infeasible + infeasible.T@Pq@infeasible + model.offset > 0
- True
- >>> poly.evaluate(infeasible) + model.alpha * model.offset > 0
- True
- >>> infeasible = 1 - np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
- >>> poly.evaluate(infeasible) + model.alpha * model.offset > 6
- True
- >>> val1 = poly.evaluate(infeasible) + model.alpha * model.offset
- >>> model.penalty_multiplier *= 2
- >>> poly2 = model.polynomial
- >>> val2 = poly2.evaluate(infeasible) + model.alpha * model.offset
- >>> val1 < val2
- True
- """
- def __init__(self, D : Dict[Tuple[int, int], float]) -> None:
- super(MTZTSPModel, self).__init__(D)
- self.variables = variables = []
- coefficients = []
- indices = []
- for (u, v) in D.keys():
- varname = f"x_{u}_{v}"
- varidx = len(variables)
- variables.append(varname)
- indices.append((0, varidx+1))
- coefficients.append(D[(u, v)])
- for u in self.nodes:
- variables.append(f"s_{u}")
- self.coefficients = coefficients
- self.indices = indices
- self.max_order = 2
- @property
- def constraints(self) -> Tuple[np.ndarray, np.ndarray]:
- """
- Build the constraints: Two constraints for every node, one for the
- edge chosen to enter and another for the edge chosen to leave.
- One constraint for every edge not leading to the depot.
- Returns: 2-Tuple of numpy arrays, one as lefthand side and the other
- for the righthand side. $Ax = b$
- """
-
- depot = list(self.nodes)[0]
- depot_in = [uv for uv in self.edges if uv[-1] == depot]
- m = 2*self.N+len(self.edges) - len(depot_in)
- lhs = np.ndarray((m, self.n), dtype=np.int32)
- rhs = np.ndarray((m,), dtype=np.int32)
- senses = ["EQ" for i in range(m)]
- for idx, node in enumerate(self.nodes):
- rhs[idx] = 1
- rhs[self.N + idx] = 1
- for (u, v) in self.edges:
- if v == node:
- varname = f"x_{u}_{v}"
- varidx = self.variables.index(varname)
- lhs[idx, varidx] = 1
- elif u == node:
- varname = f"x_{u}_{v}"
- varidx = self.variables.index(varname)
- lhs[self.N+idx, varidx] = 1
-
-
- idx = 0
- for (u, v) in self.edges:
- if v != depot:
- senses[2*self.N + idx] = "LE"
- lhs[2*self.N + idx, varidx] = self.N - 1
- vidx = self.variables.index(f"s_{v}")
- lhs[2*self.N + idx, vidx] = -1
- uidx = self.variables.index(f"s_{u}")
- lhs[2*self.N + idx, uidx] = 1
- rhs[2*self.N + idx] = self.N
- idx += 1
-
- self.senses = senses
- self.lhs = lhs
- self.rhs = rhs
-
- return super(MTZTSPModel, self).constraints
- def cost(self, solution : np.ndarray) -> float:
- """
- Solution cost is the sum of all D values where (i,j) is chosen
- Parameters:
- :solution: np.ndarray - An array of of 0,1 values which describe a route
- by setting variables representing active edges to 1.
- Returns: float
- """
-
- cost_val = 0
- for (u, v) in self.edges:
- varname = f"x_{u}_{v}"
- varidx = self.variables.index(varname)
- cost_val += solution[varidx] * self.D[(u, v)]
- return cost_val
- @property
- def upper_bound(self) -> np.ndarray:
- """
- For all route variables, the domain is {0, 1}. The sequence variables
- can take on values in [0, 1, 2, ..., N].
-
- """
-
-
- upper_bound = np.ones((len(self.variables),))
- upper_bound[-self.N:] = self.N
- return upper_bound