Source code for eqc_models.graph.maxcut
- import networkx as nx
- import numpy as np
- from .base import TwoPartitionModel
- class MaxCutModel(TwoPartitionModel):
- def decode(self, solution: np.ndarray) -> np.ndarray:
- """ Override the default decoding to use a the max cut metric to determine a solution """
- Gprime, solution = determine_solution(self.G, solution)
- cut_size = len(self.G.edges) - len(Gprime.edges)
- return solution
- @property
- def J(self) -> np.ndarray:
- return self.quad_objective
- @property
- def C(self) -> np.ndarray:
- return self.linear_objective
-
- @property
- def H(self):
- return self.linear_objective, self.quad_objective
- def partition(self, solution):
- """ Return a dictionary with the partition number of each node """
-
- partition_num = {}
- for i, u in enumerate(self.node_map):
- if solution[i] == 0:
- partition_num[u] = 1
- else:
- partition_num[u] = 2
- return partition_num
- def getCutSize(self, partition):
- cut_size = 0
- for u, v in self.G.edges:
- if partition[u]!=partition[v]:
- cut_size += 1
- return cut_size
- def costFunction(self):
- """
- Parameters
- -------------
-
- None
-
- Returns
- --------------
-
- :C: linear operator (vector array of coefficients) for cost function
- :J: quadratic operator (N by N matrix array of coefficients ) for cost function
-
- """
- G = self.G
- self.node_map = list(G.nodes)
- variables = self.variables
- n = len(variables)
- self.upper_bound = np.ones((n,))
-
- J = np.zeros((n, n), dtype=np.float32)
- h = np.zeros((n, 1), dtype=np.float32)
- for u, v in G.edges:
- J[u, v] += 1
- J[v, u] += 1
- h[u, 0] -= 1
- h[v, 0] -= 1
- return h, J
- def get_graph(n, d):
- """ Produce a repeatable graph with parameters n and d """
- seed = n * d
- return nx.random_graphs.random_regular_graph(d, n, seed)
- def get_partition_graph(G, solution):
- """
- Build the partitioned graph, counting cut size
- :parameters: G : nx.DiGraph, solution : np.ndarray
- :returns: nx.DiGraph, int
-
- """
- cut_size = 0
- Gprime = nx.DiGraph()
- Gprime.add_nodes_from(G.nodes)
- for i, j in G.edges:
- if solution[i] != solution[j]:
- cut_size += 1
- else:
- Gprime.add_edge(i, j)
- return Gprime, cut_size
- def determine_solution(G, solution):
- """
- Use a simple bisection method to determine the binary solution. Uses
- the cut size as the metric.
- Returns the partitioned graph and solution.
- :parameters: G : nx.DiGraph, solution : np.ndarray
- :returns: nx.DiGraph, np.ndarray
- """
- solution = np.array(solution)
- test_vals = np.copy(solution)
- test_vals.sort()
- lower = 0
- upper = solution.shape[0] - 1
- best_cut_size = 0
- best_graph = G
- best_solution = None
- while upper > lower:
- middle = (upper + lower) // 2
- threshold = test_vals[middle]
- test_solution = (solution>=threshold).astype(np.int32)
- Gprime, cut_size = get_partition_graph(G, test_solution)
- if cut_size > best_cut_size:
- best_cut_size = cut_size
- lower = middle
- best_solution = test_solution
- best_graph = Gprime
- else:
- upper = middle
- return best_graph, best_solution
- def get_maxcut_H(G, t):
- """
- Return a Hamiltonian representing the Maximum Cut Problem. Scale the problem using `t`.
- Automatically adds a slack qudit.
-
- """
- n = len(G.nodes)
- J = np.zeros(shape=(n+1, n+1), dtype=np.float32)
- h = np.zeros(shape=(n+1,1), dtype=np.float32)
- for u, v in G.edges:
- J[u, v] += 1
- J[v, u] += 1
- J[u, u] = 1
- J[v, v] = 1
- h[u] -= 1
- h[v] -= 1
- J *= 1/t**2
- h *= 1/t
- H = np.hstack([h, J])
- return H