Download

Source code for eqc_models.allocation.portmomentum

  • # (C) Quantum Computing Inc., 2024.
  • # Import libs
  • import os
  • import sys
  • import time
  • import datetime
  • import json
  • import warnings
  • from functools import wraps
  • import numpy as np
  • import pandas as pd
  • from .portbase import PortBase
  • class PortMomentum(PortBase):
  • def __init__(
  • self,
  • stocks: list,
  • stock_data_dir: str,
  • adj_date: str,
  • lookback_days: int = 60,
  • window_days: int = 30,
  • window_overlap_days: int = 15,
  • weight_upper_limit: float = 0.08,
  • r_base: float = 0.05 / 365,
  • alpha: float = 5.0,
  • beta: float = 1.0,
  • xi: float = 1.0,
  • ):
  • self.stocks = stocks
  • self.data_dir = stock_data_dir
  • self.adj_date = adj_date
  • self.lookback_days = lookback_days
  • self.window_days = window_days
  • self.window_overlap_days = window_overlap_days
  • self.weight_upper_limit = weight_upper_limit
  • self.r_base = r_base
  • self.alpha = alpha
  • self.beta = beta
  • self.xi = xi
  • self._H = self.build()
  • def get_hamiltonian(
  • self,
  • return_df,
  • min_date,
  • max_date,
  • ):
  • stocks = self.stocks
  • xi = self.xi
  • window_days = self.window_days
  • window_overlap_days = self.window_overlap_days
  • weight_upper_limit = self.weight_upper_limit
  • # Set some params
  • K = len(stocks)
  • # Calculate Q and p_vec
  • Q = np.zeros(shape=(K, K), dtype=np.float32)
  • p_vec = np.zeros(shape=(K), dtype=np.float32)
  • m = 0
  • min_date = pd.to_datetime(min_date)
  • max_date = pd.to_datetime(max_date)
  • tmp_date = min_date
  • while tmp_date <= max_date:
  • tmp_min_date = tmp_date
  • tmp_max_date = tmp_date + datetime.timedelta(days=window_days)
  • tmp_df = return_df[
  • (return_df["Date"] >= tmp_min_date)
  • & (return_df["Date"] <= tmp_max_date)
  • ]
  • r_list = []
  • for i in range(K):
  • r_list.append(np.array(tmp_df[stocks[i]]))
  • Q_tmp = np.cov(r_list)
  • for i in range(K):
  • p_vec[i] += -self.r_base * np.mean(r_list[i])
  • for j in range(K):
  • Q[i][j] += Q_tmp[i][j]
  • tmp_date += datetime.timedelta(
  • days=window_days - window_overlap_days,
  • )
  • m += 1
  • fct = m
  • if fct > 0:
  • fct = 1.0 / fct
  • p_vec = fct * p_vec
  • Q = fct * Q
  • # Calculate the Hamiltonian
  • J_no_limit = xi * Q
  • C_no_limit = p_vec
  • # make sure J is symmetric up to machine precision
  • J_no_limit = 0.5 * (J_no_limit + J_no_limit.transpose())
  • if weight_upper_limit is None:
  • return J_no_limit, C_no_limit, 100.0
  • W_max = 100.0 * weight_upper_limit
  • J = np.zeros(shape=(2 * K, 2 * K), dtype=np.float32)
  • C = np.zeros(shape=(2 * K), dtype=np.float32)
  • for i in range(K):
  • for j in range(K):
  • J[i][j] = J_no_limit[i][j] + self.alpha
  • J[i][i] += self.beta
  • J[i][i + K] += self.beta
  • J[i + K][i] += self.beta
  • J[i + K][i + K] += self.beta
  • C[i] = (
  • C_no_limit[i] - 200.0 * self.alpha - 2 * self.beta * W_max
  • )
  • C[i + K] = -2 * self.beta * W_max
  • C = C.reshape((C.shape[0], 1))
  • # Check hamiltonian dims
  • stocks = self.stocks
  • K = len(stocks)
  • assert J.shape[0] == K or J.shape[0] == 2 * K
  • assert J.shape[1] == K or J.shape[0] == 2 * K
  • assert C.shape[0] == K or C.shape[0] == 2 * K
  • return J, C, K * W_max