Download

Source code for eqc_models.algorithms.penaltymultiplier

  • # (C) Quantum Computing Inc., 2024.
  • from typing import Union
  • import logging
  • import numpy as np
  • from eqc_models.base.constraints import ConstraintModel
  • from eqc_models.base.base import ModelSolver
  • from eqc_models.algorithms.base import Algorithm
  • log = logging.getLogger(name=__name__)
  • class PenaltyMultiplierAlgorithm(Algorithm):
  • """
  • Parameters
  • ----------
  • model : ConstraintModel
  • Instance of a model to search out a penalty multiplier value, must be constrained model.
  • solver : ModelSolver subclass
  • Instance of a solver class to use to run the algorithm.
  • Properties
  • ----------
  • upper_bound : float
  • Upper bound value for the objective function, this need not be a least upper bound,
  • but the tighter the value, the more efficient the search
  • solutions : List
  • The solutions found during the algorithm run
  • alphas : List
  • The values of multiplier found at each algorithm iteration
  • penalties : List
  • The values for penalties found at each algorithm iteration. A penalty of 0
  • indicates algorithm termination.
  • dynamic_range : List
  • The values for the dynamic range of the unconstrained problem formulation,
  • which is useful for identifying difficulty in representation of the problem
  • on the analog device.
  • The penalty multiplier search algorithm uses an infeasible solution to select the next
  • value for the penalty multiplier. The algorithm depends upon good solutions and only
  • guarantees termination when the solution found for a given multiplier is optimal. For
  • this reason, the implementation will terminate when no progress is made, thus making
  • it a heuristic. Providing an exact solver for the solver instance will guarantee that
  • the algorithm is correct and the penalty mulktiplier found is the minimal multiplier
  • capable of enforcing the condition that an unconstrained objective value for a feasible
  • solution is less than an unconstrained objective value for an infeasible solution.
  • This example uses the quadratic assignment problem and the known multiplier to test
  • the implementation of the algorithm.
  • >>> from eqc_models.solvers.qciclient import Dirac3CloudSolver
  • >>> from eqc_models.assignment.qap import QAPModel
  • >>> A = np.array([[0, 5, 8, 0, 1],
  • ... [0, 0, 0, 10, 15],
  • ... [0, 0, 0, 13, 18],
  • ... [0, 0, 0, 0, 0.],
  • ... [0, 0, 0, 1, 0.]])
  • >>> B = np.array([[0, 8.54, 6.4, 10, 8.94],
  • ... [8.54, 0, 4.47, 5.39, 6.49],
  • ... [6.4, 4.47, 0, 3.61, 3.0],
  • ... [10, 5.39, 3.61, 0, 2.0],
  • ... [8.94, 6.49, 3.0, 2.0, 0.]])
  • >>> C = np.array([[2, 3, 6, 3, 7],
  • ... [3, 9, 2, 5, 9],
  • ... [2, 6, 4, 1, 2],
  • ... [7, 5, 8, 5, 7],
  • ... [1, 9, 2, 9, 2.]])
  • >>> model = QAPModel(A, B, C)
  • >>> solver = Dirac3CloudSolver() # must be configured with environment variables
  • >>> algo = PenaltyMultiplierAlgorithm(model, solver)
  • >>> algo.upper_bound = 330.64
  • >>> algo.run(relaxation_schedule=2, mean_photon_number=0.15, normalized_loss_rate=4, num_samples=5) # doctest: +ELLIPSIS
  • 2... RUNNING... COMPLETED...
  • >>> algo.alphas[-1] # doctest: +SKIP
  • 106.25
  • >>> algo.penalties[-1] # doctest: +SKIP
  • 0.0
  • """
  • def __init__(self, model : ConstraintModel, solver : ModelSolver):
  • self.model = model
  • self.solver = solver
  • # ub = np.max(model.quad_objective)
  • # if ub < np.max(model.linear_objective):
  • # ub = np.max(model.linear_objective)
  • # ub *= model.sum_constraint
  • # else:
  • # ub *= model.sum_constraint ** 2
  • self.ub = None # ub
  • self.solutions = None
  • self.penalties = None
  • self.alphas = None
  • self.dynamic_range = None
  • self.responses = None
  • @property
  • def upper_bound(self) -> float:
  • return self.ub
  • @upper_bound.setter
  • def upper_bound(self, value : float):
  • self.ub = value
  • def run(self, initial_alpha : float=None, initial_solution : np.array = None, **kwargs):
  • """ Start with a guess at alpha, iterate until alpha is sufficiently large """
  • self.solutions = solutions = []
  • self.penalties = penalties = []
  • self.alphas = alphas = []
  • self.dynamic_range = dynamic_range = []
  • self.responses = responses = []
  • self.energies = energies = []
  • model = self.model
  • solver = self.solver
  • offset = model.offset
  • ub = self.ub
  • if initial_alpha is None and offset > 0:
  • alpha = ub / offset
  • log.info("UPPER BOUND %f OFFSET %f -> ALPHA %f",
  • ub, offset, alpha)
  • if alpha < 1:
  • alpha = 1
  • elif initial_alpha is not None:
  • alpha = initial_alpha
  • else:
  • log.info("No tricks for initial alpha, setting to 1")
  • alpha = 1
  • if initial_solution is not None:
  • log.debug("INITIAL SOLUTION GIVEN")
  • obj_val = model.evaluate(initial_solution, alpha, True)
  • penalty = model.evaluatePenalties(initial_solution) + offset
  • log.info("INITIAL SOLUTION OBJECTIVE %f PENALTY %f", obj_val, penalty)
  • if obj_val < ub:
  • alpha += (ub - obj_val) / penalty
  • log.info("INITIAL SOLUTION DETERMINED ALPHA %f", alpha)
  • else:
  • penalty = None
  • while penalty is None or penalty > 1e-6:
  • log.info("NEW RUN")
  • log.info("SETTING MULTIPLIER %f", alpha)
  • model.penalty_multiplier = float(alpha)
  • log.info("GOT MULTIPLIER %f NEW OFFSET %f", model.penalty_multiplier,
  • model.penalty_multiplier * model.offset)
  • dynamic_range.append(float(model.dynamic_range))
  • log.info("CALLING SOLVE WITH ALPHA %f DYNAMIC RANGE %f", alpha, dynamic_range[-1])
  • alphas.append(float(alpha))
  • response = solver.solve(model, **kwargs)
  • responses.append(response)
  • results = response["results"]
  • solution = np.array(results["solutions"][0])
  • solutions.append(solution)
  • penalty = model.evaluatePenalties(solution) + offset
  • penalties.append(float(penalty))
  • obj_val = model.evaluate(solution, alpha, True)
  • less_offset = model.evaluate(solution, alpha, False)
  • energies.append(results["energies"][0])
  • log.info("NEW SOLUTION OBJECTIVE %f LESS OFFSET %f ENERGY %f PENALTY %f",
  • obj_val, less_offset, energies[-1], penalty)
  • if obj_val < ub:
  • alpha += (ub - obj_val) / penalty
  • if abs(sum(penalties[-2:])/2-penalty) < 1e-4:
  • log.warn("SUFFICIENT PROGRESS NOT MADE FOR THREE ITERATIONS, QUITTING")
  • break