Source code for eqc_models.algorithms.penaltymultiplier
- from typing import Union
- import logging
- import numpy as np
- from eqc_models.base.constraints import ConstraintModel
- from eqc_models.base.base import ModelSolver
- from eqc_models.algorithms.base import Algorithm
- log = logging.getLogger(name=__name__)
- class PenaltyMultiplierAlgorithm(Algorithm):
- """
- Parameters
- ----------
- model : ConstraintModel
- Instance of a model to search out a penalty multiplier value, must be constrained model.
- solver : ModelSolver subclass
- Instance of a solver class to use to run the algorithm.
- Properties
- ----------
- upper_bound : float
- Upper bound value for the objective function, this need not be a least upper bound,
- but the tighter the value, the more efficient the search
- solutions : List
- The solutions found during the algorithm run
- alphas : List
- The values of multiplier found at each algorithm iteration
- penalties : List
- The values for penalties found at each algorithm iteration. A penalty of 0
- indicates algorithm termination.
- dynamic_range : List
- The values for the dynamic range of the unconstrained problem formulation,
- which is useful for identifying difficulty in representation of the problem
- on the analog device.
- The penalty multiplier search algorithm uses an infeasible solution to select the next
- value for the penalty multiplier. The algorithm depends upon good solutions and only
- guarantees termination when the solution found for a given multiplier is optimal. For
- this reason, the implementation will terminate when no progress is made, thus making
- it a heuristic. Providing an exact solver for the solver instance will guarantee that
- the algorithm is correct and the penalty mulktiplier found is the minimal multiplier
- capable of enforcing the condition that an unconstrained objective value for a feasible
- solution is less than an unconstrained objective value for an infeasible solution.
- This example uses the quadratic assignment problem and the known multiplier to test
- the implementation of the algorithm.
- >>> from eqc_models.solvers.qciclient import Dirac3CloudSolver
- >>> from eqc_models.assignment.qap import QAPModel
- >>> A = np.array([[0, 5, 8, 0, 1],
- ... [0, 0, 0, 10, 15],
- ... [0, 0, 0, 13, 18],
- ... [0, 0, 0, 0, 0.],
- ... [0, 0, 0, 1, 0.]])
- >>> B = np.array([[0, 8.54, 6.4, 10, 8.94],
- ... [8.54, 0, 4.47, 5.39, 6.49],
- ... [6.4, 4.47, 0, 3.61, 3.0],
- ... [10, 5.39, 3.61, 0, 2.0],
- ... [8.94, 6.49, 3.0, 2.0, 0.]])
- >>> C = np.array([[2, 3, 6, 3, 7],
- ... [3, 9, 2, 5, 9],
- ... [2, 6, 4, 1, 2],
- ... [7, 5, 8, 5, 7],
- ... [1, 9, 2, 9, 2.]])
- >>> model = QAPModel(A, B, C)
- >>> solver = Dirac3CloudSolver() # must be configured with environment variables
- >>> algo = PenaltyMultiplierAlgorithm(model, solver)
- >>> algo.upper_bound = 330.64
- >>> algo.run(relaxation_schedule=2, mean_photon_number=0.15, normalized_loss_rate=4, num_samples=5) # doctest: +ELLIPSIS
- 2... RUNNING... COMPLETED...
- >>> algo.alphas[-1] # doctest: +SKIP
- 106.25
- >>> algo.penalties[-1] # doctest: +SKIP
- 0.0
-
- """
- def __init__(self, model : ConstraintModel, solver : ModelSolver):
- self.model = model
- self.solver = solver
-
-
-
-
-
-
- self.ub = None
- self.solutions = None
- self.penalties = None
- self.alphas = None
- self.dynamic_range = None
- self.responses = None
- @property
- def upper_bound(self) -> float:
- return self.ub
- @upper_bound.setter
- def upper_bound(self, value : float):
- self.ub = value
- def run(self, initial_alpha : float=None, initial_solution : np.array = None, **kwargs):
- """ Start with a guess at alpha, iterate until alpha is sufficiently large """
- self.solutions = solutions = []
- self.penalties = penalties = []
- self.alphas = alphas = []
- self.dynamic_range = dynamic_range = []
- self.responses = responses = []
- self.energies = energies = []
- model = self.model
- solver = self.solver
- offset = model.offset
- ub = self.ub
- if initial_alpha is None and offset > 0:
- alpha = ub / offset
- log.info("UPPER BOUND %f OFFSET %f -> ALPHA %f",
- ub, offset, alpha)
- if alpha < 1:
- alpha = 1
- elif initial_alpha is not None:
- alpha = initial_alpha
- else:
- log.info("No tricks for initial alpha, setting to 1")
- alpha = 1
- if initial_solution is not None:
- log.debug("INITIAL SOLUTION GIVEN")
- obj_val = model.evaluate(initial_solution, alpha, True)
- penalty = model.evaluatePenalties(initial_solution) + offset
- log.info("INITIAL SOLUTION OBJECTIVE %f PENALTY %f", obj_val, penalty)
- if obj_val < ub:
- alpha += (ub - obj_val) / penalty
- log.info("INITIAL SOLUTION DETERMINED ALPHA %f", alpha)
- else:
- penalty = None
-
- while penalty is None or penalty > 1e-6:
- log.info("NEW RUN")
- log.info("SETTING MULTIPLIER %f", alpha)
- model.penalty_multiplier = float(alpha)
- log.info("GOT MULTIPLIER %f NEW OFFSET %f", model.penalty_multiplier,
- model.penalty_multiplier * model.offset)
- dynamic_range.append(float(model.dynamic_range))
- log.info("CALLING SOLVE WITH ALPHA %f DYNAMIC RANGE %f", alpha, dynamic_range[-1])
- alphas.append(float(alpha))
- response = solver.solve(model, **kwargs)
- responses.append(response)
- results = response["results"]
- solution = np.array(results["solutions"][0])
- solutions.append(solution)
- penalty = model.evaluatePenalties(solution) + offset
- penalties.append(float(penalty))
- obj_val = model.evaluate(solution, alpha, True)
- less_offset = model.evaluate(solution, alpha, False)
- energies.append(results["energies"][0])
- log.info("NEW SOLUTION OBJECTIVE %f LESS OFFSET %f ENERGY %f PENALTY %f",
- obj_val, less_offset, energies[-1], penalty)
- if obj_val < ub:
- alpha += (ub - obj_val) / penalty
- if abs(sum(penalties[-2:])/2-penalty) < 1e-4:
- log.warn("SUFFICIENT PROGRESS NOT MADE FOR THREE ITERATIONS, QUITTING")
- break