Download

Source code for eqc_models.combinatorics.setcover

  • r"""
  • SetCoverModel solves the mathematical programming problem
  • $$
  • \mathrm{minimize}_x \sum_{x_i:X_i \in X} c_i x_i
  • $$
  • Subject to
  • $$
  • \sum_{i:a\in X_i} x_j \geq 1 \, \forall a \in A}
  • $$$
  • and
  • $$
  • x_i \in \{0, 1\} \forall {x_i: X_i \in X}
  • $$
  • Where $S$ is a set of all elements, $X$ is a collection of sets $X_i$, and the union of all is equal to $S$.
  • """
  • from typing import List
  • import numpy as np
  • from eqc_models.base import ConstrainedQuadraticModel
  • [docs]
  • class SetCoverModel(ConstrainedQuadraticModel):
  • """
  • Parameters
  • -------------
  • subsets : List
  • List of sets where the union of all sets is S
  • weights : List
  • List of weights where each weight is the cost of choosing the subset
  • corresponding to the index of the weight.
  • >>> X = [set(['A', 'B']), set(['B', 'C']), set(['C'])]
  • >>> weights = [2, 2, 1]
  • >>> model = SetCoverModel(X, weights)
  • >>> model.penalty_multiplier = 8
  • >>> lhs, rhs = model.constraints
  • >>> lhs
  • array([[ 1, 0, 0, 0, 0],
  • [ 1, 1, 0, -1, 0],
  • [ 0, 1, 1, 0, -1]])
  • >>> from eqc_models.solvers import Dirac3IntegerCloudSolver
  • >>> solver = Dirac3IntegerCloudSolver()
  • >>> response = solver.solve(model, relaxation_schedule=1, num_samples=5) #doctest: +ELLIPSIS
  • 20...
  • >>> solutions = response["results"]["solutions"]
  • >>> solutions[0]
  • [1, 0, 1, 0, 0]
  • >>> selections = model.decode(solutions[0])
  • >>> assert {'B', 'A'} in selections
  • >>> assert {'C'} in selections
  • >>> assert len(selections) == 2
  • """
  • def __init__(self, subsets, weights):
  • # ensure that X is ordered
  • self.S = S = list(subsets)
  • self.universal_set = U = set()
  • for x in subsets:
  • U.update(x)
  • # elements is sorted to maintain consistent output
  • elements = [a for a in U]
  • elements.sort()
  • # constraints
  • A = []
  • b = []
  • variables = [f'x_{i}' for i in range(len(S))]
  • pos = 0
  • num_slacks = 0
  • slack_ub = []
  • for a in elements:
  • num_sets = sum([1 if a in S[i] else 0 for i in range(len(S))])
  • assert num_sets >= 1, "Invalid subsets, check the universal set"
  • if num_sets > 1:
  • num_slacks += 1
  • slack_ub.append(num_sets-1)
  • for i, a in enumerate(elements):
  • constraint = [1 if a in S[j] else 0 for j in range(len(S))]
  • slacks = [0 for i in range(num_slacks)]
  • if slack_ub[i] > 0:
  • variables.append(f"s_{pos}")
  • slacks[pos] = -1
  • pos += 1
  • A.append(constraint + slacks)
  • b.append(1)
  • n = len(variables)
  • J = np.zeros((n, n))
  • h = np.zeros((n, ))
  • h[:len(weights)] = weights
  • # call the superclass constructor with the objective and constraints
  • super(SetCoverModel, self).__init__(h, J, np.array(A), np.array(b))
  • # set upper bound on the variables to be 1 for x_i and the length of X minus 1 for the slacks
  • slack_ub = [val for val in slack_ub if val > 0]
  • self.upper_bound = np.array([1 for i in range(len(weights))] + slack_ub)
  • [docs]
  • def decode(self, solution) -> List:
  • xbar = []
  • for i in range(len(self.S)):
  • if solution[i] > 0.5:
  • xbar.append(self.S[i])
  • return xbar