- """
- Utilities for Python client for files REST API for optimization service.
- Copyright 2023, Quantum Computing Incorporated
- """
- import gzip
- from io import BytesIO
- import json
- from math import floor
- import sys
- from typing import Generator
- from qci_client import enum, types
- MEMORY_MAX: int = 8 * 1000000
- def get_post_request_body(
- *, file: dict
- ) -> types.MetadataPostRequestBody:
- """
- Format metadata body.
- """
- file_type = enum.get_file_type(file=file)
- file_config = file["file_config"][file_type.value]
- optional_fields = {}
- if "file_name" in file:
- optional_fields["file_name"] = file["file_name"]
- if file_type == enum.FileType.CONSTRAINTS:
- return types.InputMetadataPostRequestBody(
- **optional_fields,
- file_config=types.ConstraintsMetadataConfig(
- constraints=types.ConstraintsMetadata(
- num_constraints=file_config["num_constraints"],
- num_variables=file_config["num_variables"],
- )
- ),
- )
- if file_type == enum.FileType.GRAPH:
- if "directed" in file_config:
- optional_fields["directed"] = file_config["directed"]
- if "multigraph" in file_config:
- optional_fields["multigraph"] = file_config["multigraph"]
- if "graph" in file_config:
- optional_fields["graph"] = file_config["graph"]
- return types.InputMetadataPostRequestBody(
- **optional_fields,
- file_config=types.GraphMetadataConfig(
- graph=types.GraphMetadata(
- **optional_fields,
- num_edges=file_config["num_edges"],
- num_nodes=file_config["num_nodes"],
- )
- ),
- )
- if file_type == enum.FileType.HAMILTONIAN:
- return types.InputMetadataPostRequestBody(
- **optional_fields,
- file_config=types.HamiltonianMetadataConfig(
- hamiltonian=types.HamiltonianMetadata(
- num_variables=file_config["num_variables"],
- )
- ),
- )
- if file_type == enum.FileType.OBJECTIVE:
- return types.InputMetadataPostRequestBody(
- **optional_fields,
- file_config=types.ObjectiveMetadataConfig(
- objective=types.ObjectiveMetadata(
- num_variables=file_config["num_variables"],
- )
- ),
- )
- if file_type == enum.FileType.POLYNOMIAL:
- return types.InputMetadataPostRequestBody(
- **optional_fields,
- file_config=types.PolynomialMetadataConfig(
- polynomial=types.PolynomialMetadata(
- min_degree=file_config["min_degree"],
- max_degree=file_config["max_degree"],
- num_variables=file_config["num_variables"],
- )
- ),
- )
- if file_type == enum.FileType.QUBO:
- return types.InputMetadataPostRequestBody(
- **optional_fields,
- file_config=types.QuboMetadataConfig(
- qubo=types.QuboMetadata(
- num_variables=file_config["num_variables"],
- )
- ),
- )
- if file_type == enum.FileType.GP_RESULTS:
- return types.ResultsMetadataPostRequestBody(
- **optional_fields,
- user_id=file["user_id"],
- organization_id=file["organization_id"],
- file_config=types.GpResultsMetadataConfig(
- graph_partitioning_results=types.GpResultsMetadata()
- ),
- )
- if file_type == enum.FileType.IHO_RESULTS:
- return types.ResultsMetadataPostRequestBody(
- **optional_fields,
- user_id=file["user_id"],
- organization_id=file["organization_id"],
- file_config=types.IhoResultsMetadataConfig(
- ising_hamiltonian_optimization_results=types.IhoResultsMetadata()
- ),
- )
- if file_type == enum.FileType.NQHO_CONTINUOUS_RESULTS:
- return types.ResultsMetadataPostRequestBody(
- **optional_fields,
- user_id=file["user_id"],
- organization_id=file["organization_id"],
- file_config=types.NqhoContinuousResultsMetadataConfig(
- normalized_qudit_hamiltonian_optimization_continuous_results=types.NqhoContinuousResultsMetadata()
- ),
- )
- if file_type == enum.FileType.NQHO_INTEGER_RESULTS:
- return types.ResultsMetadataPostRequestBody(
- **optional_fields,
- user_id=file["user_id"],
- organization_id=file["organization_id"],
- file_config=types.NqhoIntegerResultsMetadataConfig(
- normalized_qudit_hamiltonian_optimization_integer_results=types.NqhoIntegerResultsMetadata()
- ),
- )
- if file_type == enum.FileType.QLCBO_RESULTS:
- return types.ResultsMetadataPostRequestBody(
- **optional_fields,
- user_id=file["user_id"],
- organization_id=file["organization_id"],
- file_config=types.QlcboResultsMetadataConfig(
- quadratic_linearly_constrained_binary_optimization_results=types.QlcboResultsMetadata()
- ),
- )
- if file_type == enum.FileType.QUBO_RESULTS:
- return types.ResultsMetadataPostRequestBody(
- **optional_fields,
- user_id=file["user_id"],
- organization_id=file["organization_id"],
- file_config=types.QuboResultsMetadataConfig(
- quadratic_unconstrained_binary_optimization_results=types.QuboResultsMetadata()
- ),
- )
- raise ValueError(f"unsupported file type: '{file_type.value}'")
- def get_patch_request_body(
- *, file: dict
- ) -> types.PartPatchRequestBody:
- """Format part body."""
- file_type = enum.get_file_type(file=file)
- file_config = file["file_config"][file_type.value]
- if file_type == enum.FileType.CONSTRAINTS:
- return types.PartPatchRequestBody(
- file_config=types.ConstraintsPartConfig(
- constraints=types.ConstraintsPart(data=file_config["data"])
- ),
- )
- if file_type == enum.FileType.GRAPH:
- return types.PartPatchRequestBody(
- file_config=types.GraphPartConfig(
- graph=types.GraphPart(
- links=file_config["links"],
- nodes=file_config["nodes"],
- )
- ),
- )
- if file_type == enum.FileType.HAMILTONIAN:
- return types.PartPatchRequestBody(
- file_config=types.HamiltonianPartConfig(
- hamiltonian=types.HamiltonianPart(data=file_config["data"])
- ),
- )
- if file_type == enum.FileType.OBJECTIVE:
- return types.PartPatchRequestBody(
- file_config=types.ObjectivePartConfig(
- objective=types.ObjectivePart(data=file_config["data"])
- ),
- )
- if file_type == enum.FileType.POLYNOMIAL:
- return types.PartPatchRequestBody(
- file_config=types.PolynomialPartConfig(
- polynomial=types.PolynomialPart(data=file_config["data"])
- ),
- )
- if file_type == enum.FileType.QUBO:
- return types.PartPatchRequestBody(
- file_config=types.QuboPartConfig(
- qubo=types.QuboPart(data=file_config["data"])
- ),
- )
- if file_type == enum.FileType.GP_RESULTS:
- return types.PartPatchRequestBody(
- file_config=types.GpResultsPartConfig(
- graph_partitioning_results=types.GpResultsPart(
- balances=file_config["balances"],
- counts=file_config["counts"],
- cut_sizes=file_config["cut_sizes"],
- energies=file_config["energies"],
- feasibilities=file_config["feasibilities"],
- partitions=file_config["partitions"],
- solutions=file_config["solutions"],
- )
- ),
- )
- if file_type == enum.FileType.IHO_RESULTS:
- return types.PartPatchRequestBody(
- file_config=types.IhoResultsPartConfig(
- ising_hamiltonian_optimization_results=types.IhoResultsPart(
- counts=file_config["counts"],
- energies=file_config["energies"],
- solutions=file_config["solutions"],
- )
- ),
- )
- if file_type == enum.FileType.NQHO_CONTINUOUS_RESULTS:
- return types.PartPatchRequestBody(
- file_config=types.NqhoContinuousResultsPartConfig(
- normalized_qudit_hamiltonian_optimization_continuous_results=types.NqhoContinuousResultsPart(
- counts=file_config["counts"],
- energies=file_config["energies"],
- solutions=file_config["solutions"],
- )
- ),
- )
- if file_type == enum.FileType.NQHO_INTEGER_RESULTS:
- return types.PartPatchRequestBody(
- file_config=types.NqhoIntegerResultsPartConfig(
- normalized_qudit_hamiltonian_optimization_integer_results=types.NqhoIntegerResultsPart(
- counts=file_config["counts"],
- energies=file_config["energies"],
- solutions=file_config["solutions"],
- )
- ),
- )
- if file_type == enum.FileType.QLCBO_RESULTS:
- return types.PartPatchRequestBody(
- file_config=types.QlcboResultsPartConfig(
- quadratic_linearly_constrained_binary_optimization_results=types.QlcboResultsPart(
- counts=file_config["counts"],
- energies=file_config["energies"],
- feasibilities=file_config["feasibilities"],
- objective_values=file_config["objective_values"],
- solutions=file_config["solutions"],
- )
- ),
- )
- if file_type == enum.FileType.QUBO_RESULTS:
- return types.PartPatchRequestBody(
- file_config=types.QuboResultsPartConfig(
- quadratic_unconstrained_binary_optimization_results=types.QuboResultsPart(
- counts=file_config["counts"],
- energies=file_config["energies"],
- solutions=file_config["solutions"],
- )
- ),
- )
- raise ValueError(f"unsupported file type: '{file_type.value}'")
- def zip_payload(*, payload: types.PartPatchRequestBody) -> bytes:
- """
- :param payload: str - json contents of file to be zipped
- :return: zipped request_body
- """
- with BytesIO() as fileobj:
- with gzip.GzipFile(fileobj=fileobj, mode="w", compresslevel=6) as file:
- file.write(json.dumps(payload).encode("utf-8"))
- return fileobj.getvalue()
- def file_part_generator(*, file: dict, compress: bool) -> Generator:
- """
- Break file-to-upload's data dictionary into chunks, formatting correctly with each
- returned chunk.
- :param file: file to break up into file parts
- :param compress: whether or not file parts are to be compressed
- :return: generator of (part_body, part_number) tuples
- """
- if compress:
-
-
-
- data_chunk_size_max = 20000
- else:
-
-
-
-
- data_chunk_size_max = 10000
- file_type = enum.get_file_type(file=file)
- file_config = file["file_config"][file_type.value]
- if file_type in enum.JOB_INPUTS_NON_GRAPH_FILE_TYPES:
- return _data_generator(
- file_type=file_type,
- file_config=file_config,
- step_length=data_chunk_size_max,
- )
- if file_type == enum.FileType.GRAPH:
- return _graph_generator(
- file_type=file_type,
- file_config=file_config,
- step_length=data_chunk_size_max,
- )
-
- if file_type in enum.JOB_RESULTS_FILE_TYPES:
- return _results_generator(
- file_type=file_type,
- file_config=file_config,
- step_length=_compute_results_step_len(file_config["solutions"][0]),
- )
- raise ValueError(f"unhandled file_type: {file_type.value}")
- def _get_size(obj, seen=None) -> int:
- """
- Recursively finds size of objects
- :param obj: data object to recursively compute size of
- :param seen: takes a set and is used in the recursive step only to record whether an
- object has been counted yet.
- :return int:
- """
- size = sys.getsizeof(obj)
- if seen is None:
- seen = set()
- obj_id = id(obj)
- if obj_id in seen:
- return 0
-
-
- seen.add(obj_id)
- if isinstance(obj, dict):
- size += sum(_get_size(v, seen) for v in obj.values())
- size += sum(_get_size(k, seen) for k in obj.keys())
- elif hasattr(obj, "__dict__"):
- size += _get_size(obj.__dict__, seen)
- elif hasattr(obj, "__iter__") and not isinstance(obj, (str, bytes, bytearray)):
- size += sum(_get_size(i, seen) for i in obj)
- return size
- def _get_soln_size(soln):
-
-
- if isinstance(soln[0], dict):
- return _get_size(soln)
- return sys.getsizeof(soln[0]) * len(soln)
- def _compute_results_step_len(data: list) -> int:
- """
- Compute the step length for "chunking" the provided data.
- Args:
- data: A list of data
- Returns:
- The step length for "chunking" the data
- """
-
- soln_mem = _get_soln_size(data)
-
- chunk_ratio = MEMORY_MAX / soln_mem
- step_len = max(floor(chunk_ratio), 1)
- return step_len
- def _data_generator(
- *, file_type: enum.FileType, file_config: dict, step_length: int
- ) -> Generator:
-
- for part_number, i in enumerate(
- range(0, max(1, len(file_config["data"])), step_length)
- ):
- chunk = {
- "file_config": {
- file_type.value: {
- "data": file_config["data"][i : i + step_length],
- }
- }
- }
- yield chunk, part_number + 1
- def _graph_generator(
- *, file_type: enum.FileType, file_config: dict, step_length: int
- ) -> Generator:
-
- for part_number, i in enumerate(
- range(
- 0,
- max(1, len(file_config["links"]), len(file_config["nodes"])),
- step_length,
- )
- ):
- chunk = {
- "file_config": {
- file_type.value: {
- "links": file_config["links"][i : i + step_length],
- "nodes": file_config["nodes"][i : i + step_length],
- }
- }
- }
- yield chunk, part_number + 1
- def _results_generator(
- *, file_type: enum.FileType, file_config: dict, step_length: int
- ) -> Generator:
- for part_number, i in enumerate(
- range(0, max(1, len(file_config["solutions"])), step_length)
- ):
- chunk = {"file_config": {file_type.value: {}}}
- for key, value in file_config.items():
- chunk["file_config"][file_type.value][key] = value[i : i + step_length]
- yield chunk, part_number + 1